56 research outputs found

    A Reversible Color Polyphenism in American Peppered Moth (Biston betularia cognataria) Caterpillars

    Get PDF
    Insect body color polyphenisms enhance survival by producing crypsis in diverse backgrounds. While color polyphenisms are often indirectly induced by temperature, rearing density, or diet, insects can benefit from immediate crypsis if they evolve polyphenisms directly induced by exposure to the background color, hence immediately deriving protection from predation. Here, we examine such a directly induced color polyphenism in caterpillars of the geometrid peppered moth (Biston betularia). This larval color polyphenism is unrelated to the genetic polymorphism for melanic phenotypes in adult moths. B. betularia caterpillars are generalist feeders and develop body colors that closely match the brown or green twigs of their host plant. We expand on previous studies examining the proximal cues that stimulate color development. Under controlled rearing conditions, we manipulated diets and background reflectance, using both natural and artificial twigs, and show that visual experience has a much stronger effect than does diet in promoting precise color matching. Their induced body color was not a simple response to reflectance or light intensity but instead specifically matched the wavelength of light to which they were exposed. We also show that the potential to change color is retained until the final (sixth) larval instar. Given their broad host range, this directly induced color polyphenism likely provides the caterpillars with strong protection from bird predation

    Pigmentation plasticity enhances crypsis in larval newts: Associated metabolic cost and background choice behaviour

    Get PDF
    In heterogeneous environments, the capacity for colour change can be a valuable adaptation enhancing crypsis against predators. Alternatively, organisms might achieve concealment by evolving preferences for backgrounds that match their visual traits, thus avoiding the costs of plasticity. Here we examined the degree of plasticity in pigmentation of newt larvae (Lissotriton boscai) in relation to predation risk. Furthermore, we tested for associated metabolic costs and pigmentation-dependent background choice behaviour. Newt larvae expressed substantial changes in pigmentation so that light, high-reflecting environment induced depigmentation whereas dark, low-reflecting environment induced pigmentation in just three days of exposure. Induced pigmentation was completely reversible upon switching microhabitats. Predator cues, however, did not enhance cryptic phenotypes, suggesting that environmental albedo induces changes in pigmentation improving concealment regardless of the perceived predation risk. Metabolic rate was higher in heavily pigmented individuals from dark environments, indicating a high energetic requirement of pigmentation that could impose a constraint to larval camouflage in dim habitats. Finally, we found partial evidence for larvae selecting backgrounds matching their induced phenotypes. However, in the presence of predator cues, larvae increased the time spent in light environments, which may reflect a escape response towards shallow waters rather than an attempt at increasing crypsisFinancial support was provided by the Spanish Ministry of Science and Innovation (MICINN), Grant CGL2012-40044 to IGM, and by the Universidad Autónoma de Madrid, Short Stay Grant to NPC. Additional financial support was provided by the MICINN, Grant CGL2015-68670-R to NP

    What explains rare and conspicuous colours in a snail? A test of time-series data against models of drift, migration or selection

    Get PDF
    It is intriguing that conspicuous colour morphs of a prey species may be maintained at low frequencies alongside cryptic morphs. Negative frequency-dependent selection by predators using search images ('apostatic selection') is often suggested without rejecting alternative explanations. Using a maximum likelihood approach we fitted predictions from models of genetic drift, migration, constant selection, heterozygote advantage or negative frequency-dependent selection to time-series data of colour frequencies in isolated populations of a marine snail (Littorina saxatilis), re-established with perturbed colour morph frequencies and followed for >20 generations. Snails of conspicuous colours (white, red, banded) are naturally rare in the study area (usually <10%) but frequencies were manipulated to levels of ~50% (one colour per population) in 8 populations at the start of the experiment in 1992. In 2013, frequencies had declined to ~15-45%. Drift alone could not explain these changes. Migration could not be rejected in any population, but required rates much higher than those recorded. Directional selection was rejected in three populations in favour of balancing selection. Heterozygote advantage and negative frequency-dependent selection could not be distinguished statistically, although overall the results favoured the latter. Populations varied idiosyncratically as mild or variable colour selection (3-11%) interacted with demographic stochasticity, and the overall conclusion was that multiple mechanisms may contribute to maintaining the polymorphisms.Heredity advance online publication, 21 September 2016; doi:10.1038/hdy.2016.77

    Coevolution in Action: Disruptive Selection on Egg Colour in an Avian Brood Parasite and Its Host

    Get PDF
    Trait polymorphism can evolve as a consequence of frequency-dependent selection. Coevolutionary interactions between hosts and parasites may lead to selection on both to evolve extreme phenotypes deviating from the norm, through disruptive selection.Here, we show through detailed field studies and experimental procedures that the ashy-throated parrotbill (Paradoxornis alphonsianus) and its avian brood parasite, the common cuckoo (Cuculus canorus), have both evolved egg polymorphism manifested in discrete immaculate white, pale blue, and blue egg phenotypes within a single population. In this host-parasite system the most common egg colours were white and blue, with no significant difference in parasitism rates between hosts laying eggs of either colour. Furthermore, selection on parasites for countering the evolution of host egg types appears to be strong, since ashy-throated parrotbills have evolved rejection abilities for even partially mimetic eggs.The parrotbill-cuckoo system constitutes a clear outcome of disruptive selection on both host and parasite egg phenotypes driven by coevolution, due to the cost of parasitism in the host and by host defences in the parasite. The present study is to our knowledge the first to report the influence of disruptive selection on evolution of discrete phenotypes in both parasite and host traits in an avian brood parasitism system

    Selection in a Complex World: Deriving Causality from Stable Equilibrium

    Get PDF
    It is an ongoing controversy whether natural selection is a cause of population change, or a mere statistical description of how individual births and deaths accumulate. In this paper I restate the problem in terms of the reference class problem, and propose how the structure of stable equilibrium can provide a solution in continuity with biological practice. Insofar natural selection can be understood as a tendency towards equilibrium, key statisticalist criticisms are avoided. Further, in a modification of the Newtonian-force analogy, it can be suggested that a better metaphor for natural selection is that of an emergent force, similar in nature to entropic forces: with magnitude and direction, but lacking a spatiotemporal origin or point of application.status: publishe

    Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers.

    Get PDF
    Organismal appearances are shaped by selection from both biotic and abiotic drivers. For example, Gloger's rule describes the pervasive pattern that more pigmented populations are found in more humid areas. However, species may also converge on nearly identical colours and patterns in sympatry, often to avoid predation by mimicking noxious species. Here we leverage a massive global citizen-science database to determine how biotic and abiotic factors act in concert to shape plumage in the world's 230 species of woodpeckers. We find that habitat and climate profoundly influence woodpecker plumage, and we recover support for the generality of Gloger's rule. However, many species exhibit remarkable convergence explained neither by these factors nor by shared ancestry. Instead, this convergence is associated with geographic overlap between species, suggesting occasional strong selection for interspecific mimicry
    corecore